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The variations in refractive index in stratified liquid flows have been a major impedi- 
ment to the use of laser-Doppler anemometry in these situations. This paper describes 
a method whereby these refractive-index variations can be drastically reduced while 
retaining the dynamically important density differences. The method uses two solutes 
to produce the density differences and it is shown that double-diffusive convection 
(of the salt-finger type) can be avoided by using a suitable pair of solutes. A theoretical 
model of the lateral wander of a single laser beam propagating through a turbulent 
medium is developed and this explains the success of the method. 

1. Introduction 
A laser-Doppler anemometer has two laser beams which cross a t  the point in the 

fluid where measurements are required. The small region of intersection of the laser 
beams is called the probe volume (or measurement control volume). One velocity 
component of small particles which pass through the probe volume is determined 
from the Doppler frequency of the light which is scattered by the particles within 
this probe volume. When a laser-Doppler anemometer is used in a turbulent flow 
with refractive-index variations, the laser beams do not remain stationary in space, 
and if the variations in refractive index are not small, the laser beams cross only 
intermittently. This causes a severe loss of signal (called 'drop-out'). Even when the 
laser beams do intersect to form a probe volume, the signal received by the anemo- 
meter has a random superimposed velocity shift due to the relative velocities of the 
laser beams. 

A method has been developed whereby the refractive indices of two solutions can 
be made very nearly equal, while retaining a density difference between the solutions. 
This enables the use of laser-Doppler anemometry in a whole range of experiments 
involving turbulence and mixing in stratified liquids. In  these flows, the buoyancy 
forces caused by differences in density are often all-important in determining the 
fluid motions. A general reference for these types of flow is Turner (1973). 

The method relies on the fact that various solutes in, say, water can contribute to 
the density and to the refractive index of the solution in different proportions. The 
problem of double-diffusive convection needs to be circumvented, and Huppert & 
Manins (1973) have derived a condition (for the salt-finger regime) under which this 
phenomenon is avoided. This criterion further restricts the choice of suitable pairs of 
solutes. 
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In  the experiments reported herein, Epsom salts and sugar have been used as the 
two solutes. The refractive index of a solution of two solutes is often approximated by 
the first few terms of a Taylor series in the two concentrations, and in this paper we 
consider in detail the influence of terms up to second order. 

The limitations on the matching of the refractive index of all parts of a stratified 
turbulent flow are due to (i) the accuracy of measurement of the refractive index of 
the two original solutions, (ii) the nonlinearity of the refractive index as a function of 
the concentrations of the solutes and (iii) the different molecular diffusivities of the 
solutes, which cause a slight mismatch of the refractive index when molecular diffusion 
is important, for example at a density interface. This slight mismatch due to diffusion 
does not increase in magnitude but it spreads out as the square root of time (like any 
slow diffusion process). 

In  $ 6  a theory is developed to quantify the lateral wander of a single laser beam as 
it propagates through a fully turbulent medium. 

It is perhaps worth mentioning that the idea of matching refractive indices is not 
new. Carlos & Richardson (1967) studied the motion of fluid around glass spheres by 
using a fluid which had the same refractive index as glass. Recent laser-Doppler 
measurements of the flow around banks of cylinders have been made possible by 
using Pyrex cylinders and a fluid mixture of 95 yo trichloroethylene and 5 yo acetone. 
The method of this paper is essentially very different because it is concerned with 
miscible, strati$ed liquids. 

2. Requirements of the solutes 
Let us consider two solutes A and B dissolved in a solvent, say water. The diffusi- 

vities will be denoted by K~ and K ~ ,  and we restrict our attention to the case where the 
solute of higher diffusivity (which we shall call solute A )  is stably stratified and solute 
B is unstably stratified. This is the regime in which we may expect salt fingering to 
occur. 

We want to avoid the occurrence of salt fingers because we wish to be able to study 
the fluid motions associated with turbulence, and we do not want these motions to be 
complicated by the presence of double-diffusive convection. 

The refractive index n and the density p of a solution (at 20 " C )  of both A and B 
can be expressed by the Taylor series 

n = 1.3330 + a,C, + b,CB+ higher-order terms, 

p = 0.9982 + upCA + bpCB + higher-order terms (g/ml), 

(1) 

(2) 

where C, is the concentration of component A in units of (weight of solute per unit 
weight of solution). It is advantageous to use this definition of CA (as opposed to, say, 
weight of solute per unit volume of solution) as the total weight of the solutions and 
the weights of each solute are strictly additive quantities when the mixing together 
of two solutions is considered. We initially consider only the first-order (linear) terms 
in (1) and ( 2 ) .  In a later section we consider the effect of the second-order terms as 
well. 

Consider a two-layer system in which a more dense solution 1 lies below a less 
dense solution 2. Note that now, in accordance with our initial assumptions, we must 
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have CAI > C,, and cB2 > CBl ,  where C,, is the concentration (in g/g of solution) 
of solute A in solution 1 etc. The restriction that the refractive indices be equal (i.e. 
n, = n,) then reduces to [from (l)] 

Let T be the ratio of the diffusivities, 7 = K B / K a  ( < l), and let the density-anomaly 
ratio R: be defined by R: = a , ( c A l - ~ ~ ~ ) / b , ( ~ ~ ~ - ~ B l ) ,  where a,(C,,-Ca2) and 
b,(CB2-CBl) are the differences between the densities of solutions 1 and 2 due to 
solute A or B alone (respectively). Note that the two-layer fluid system is gravi- 
tationally statically stable if RZ > 1. Huppert & Manins (1973) have shown that if 

R f  > T-# (4 1 
salt fingers are not able to form a t  the horizontal interface between the two solutions, 
even though the other requirements for salt fingers are fulfilled. In order to avoid salt 
fingering while having equal refractive indices, we need [from (3) and (4)] 

This equation is the essential constraint on the parameters up ,  b,,  a,, bn, K~ and K~ 

of the solutes A and B. 
The analysis of Huppert & Manins is for the possibility of the development of steady 

regular salt fingers on a flat horizontal interface, but we expect that salt fingers will 
not be able to grow at, say, the edge of a turbulent eddy if inequality ( 5 )  is satisfied by 
a large enough margin. This expectation was confirmed by the experiments, as no 
salt fingers were observed. 

In  the type of experiment for which this method is intended, one will normally wish 
to have a known density difference between two solutions and the flow will mix the 
solutions with each other in a turbulent manner. The difference in the diffusivities 
between the solutes will try to distribute the solutes unevenly (by the process of 
molecular diffusion), but if the time scale involved in the turbulent process is small 
(so that molecular diffusion is not given much time to be effective), then we may 
regard the working fluid (at any location and time) as being composed of a linear 
combination (by mixing) of the two original solutions. If the linear equation ( 1 )  were 
exact, and if we had the refractive indices of the two solutions equal initially, then 
the refractive index of a mixed linear combination of the two solut'ions would be 
unchanged. 

The most convenient pair of solutes for use in the laboratory was found to be 
Epsom salts and sugar. These are both relatively cheap and readily available. The 
constants for these solutes are (solute A is Epsom salts) K - ~  = 0.61 x lop5 em2 s--l, 
a, = 0.20286, a, = 1.0054 g/ml, K~ = 0.45 x cm2 s-l, b, = 0.14445 and b, = 

0.38407 g/ml, giving T = 0.738 and d = 0.633. Inequality (5) is satisfied with the 
right-hand side 18 yo greater than the left-hand side. The values of the diffusivities 
were taken from Huppert & Manins (1973) and the other constants were found by a 
least-squares fit to the data in Weast (1971) (see below). 
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3. Effects of deviation from linearity of the refractive-index expression 
When two solutions of the same refractive index are mixed together, the resulting 

solution has a refractive index close to but not exactly equal to that of the original 
solutions. This behaviour is to be expected because of the nonlinear terms in (1) and 
it is necessary to  quantify this effect in order to know how much the refractive index 
will vary in a turbulent mixing environment. 

The refractive index of a solution (at 20 "C) of both Epsom salts and sugar can be 
expressed more accurately as 

n = 1~3330+0~20286C,-0~0061C~+ 0.14445CB 

+0*043~~+0'158C~c~. (6) 

Shirtcliffe (1973) has found that a similar expression describes the behaviour of a 
auger-salt solution rather well, although his concentrations were expressed in terms 
of the (less convenient) mass of solute per unit vfilume of solution. The values of the 
coefficients in (6) (except for the last one) were found by a least-squares fit to the data 
tabulated in Weast (1971) for the two cases C, = 0 and C, = 0. The coefficient of the 
cross-term (0.158) was estimated as follows. A solution of Epsom salts and a solution 
of sugar with known refractive indices and hence known C, and C, (equal to 0.14507 
and 0-14590 respectively) were prepared. These were then mixed in varying pro- 
portions and the refractive index measured. Five measurements were made and the 
value of the coefficient was estimated as 0.158 & 0.006, where the error limits represent 
the maximum experimental error. Equation (6) is then expected to be accurate to 
within f 0.0001 in the range 0 < C, < 0.15 and 0 < C, < 0.15. 

We are now in a position to determine how the refractive index of a mixture of an 
Epsom-salts solution (say solution 1 with C,, = 0 and Epsom-salts concentration 
equal to C,,) and a sugar solution (say solution 2 with C,, = 0 and sugar concentration 
equal to CB2) varies with the mixture ratio m, defined by 

weight of sugar solution 
total weight of the mixed solution ' 

m =  

The resultant CA and C, of the mixture are then given by 

C, = (1 - m) CAI, C, = mC,,, 
SO 

n = 1.3330 + 0.20286( 1 - m) CA, - 0.0061(1- m)' @A, 

(7) 

+ 0~14445mCB,+0*043m2C~,+0~158m(1 -m)CAICsz. (9) 

We are interested in the situation where the refractive indices of the two original 
solutions are equal (i.e. n, = n,). Figure 1 shows the change in the refractive index 
of a mixture of the two solutions as a function of m for values of n, ranging from 1.3330 
to 1.3650 in equal steps of 0.0020. These steps correspond to approximately equal 
steps in the density difference between the solutions of 0.0048 g/ml. For each value 
of n,( = n,) the largest deviation of n from n, is the value of n a t  m = 0.5 (i.e. dnldm = 0 
a t  m = 0-5 for all n,). This maximum value of n - n, can be read from figure 1 at 
m = 0.5, and is also shown more clearly on figure 2 as a function of n,. 
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FIUURE 1. The deviation in the refractive index from nl when two solutions of equal refractive 
index are mixed in the mixture ratio rn. One solution (called solution 1)  is an Epsom-salts sol- 
ution and the other solution (solution 2) is a sugar solution. The curves are for values of n1 ranging 
from 1.3330 to 1.3650 in steps of 0.0020. 
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FIUTJRE 2. Graph of the maximum deviation of n from m1 as a function of n1 for the curves on 
figure 1. The density difference between the two solutions (p l -p2 )  is also shown as an alternative 
abscissa. 

In  some flows which are driven by a density difference there are significant regions 
of the flow where the mixture ratio m does not vary very much from some average 
value m,. It is beneficial to have dnldm = 0 at m = m, in this situation, on which case 
small variations in m about m, produce only second-order variations in the refractive 
index. The case m, = 0.5 is depicted in figure 1 (where n, = n,). It is easy to arrange 
that dnldm = 0 at any desired m, simply by choosing n2 to be slightly different from 
nl. Differentiating (9) with respect to m and setting it equal to zero at m = m,, we 
obtain 

0-086mOC2,, +CB,(0-14445 + 0.158CA1( 1 - 2m,)) 

- 0-20286C,, + 0-0122( 1 - m,) @,, = 0.  (10) 

For a given n, (i.e. given C,,) this equation is readily solved for C,, (and hence n,) 
in terms of the desired m,. Figure 3 shows n, - n1 a8 a function of m, for various values 



88 T. J .  McDougalE 

0 

-0.0010 

- 
$: -0a020 
N 

E 

-0.0030 

- 0.0040 

- 

- 0.0030 

- 
- 

- 0.0020 F 
.c 

- 0.0010 

- 0  

-0,0040 

FIGURE 3. Graphs of value of np-nl required to ensure that dnldm is zero at m,, 
plotted as a function of m, for various values of nl. 

of n,. Note that at m, = 0.50, n2 is equal to n, for all n,, which is the case we have 
considered above, 

Having chosen n, and m,, and then made solution 2 have the refractive index n2 
given by figure 3, we can plot n - n, as a function of the actual mixture ratio m. Figure 
4 shows the two cases m, = 0.25 and m, = 0.75. 

A realistic measure of the effect of refractive-index variations on the laser beams is 
the difference between the maximum and minimum refractive indices which occur 
along the length of the beams. If the range of m encountered along the path of the 
laser beams is small then we can obtain negligible refractive-index variations by 
ensuring that dnldm is zero at the mean value of m. If, however, the value of m 
ranges from zero up to one, then n,,, - nmin is minimized by selecting n2 = n,, or 
equivalently, by selecting m, = 0.50. 
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FIGURE 4. Graphs of n-nl as a function of the mixture ratio rn for (a) mo = 0.25 and ( b )  
rn, = 0.75. The curves are for values of n, ranging from 1.3330 to 1.3650 in steps of 0.0020. 

4. Effect of molecular diffusion at a density interface 
The previous section investigated the effects of nonlinear terms in (1)  on the re- 

fractive index of a mixture of two solutions. In  this section we look at  how the different 
rates of molecular diffusion of the solutes A and B (as determined by K~ and K ~ )  

distribute these solutes unevenly, thereby affecting both the refractive index and the 
density. 

Let us investigate the behaviour of an initially sharp horizontal interface between 
a layer of a solution of solute A and a layer of a solution of solute B. Initially the 
lower layer has a uniform concentration CAI of solute A and C,, = 0, while the upper 
layer has a uniform concentration CB, of solute B and c A 2  = 0. Both solutes obey a 
diffusion equation, namely 

acA/at = K g  a2cA/az2, ac,/at = K B a 2 C g / a Z 2 ,  ( l l a ,  b )  



90 T. J .  McDougall 

2.0 

0.5 

-0.15 -0.1 -0.05 - 
' -0.5 -0.5 

' -1.0 -1.0 

~I .5 -1.5 

-2.0 -2.0 
( a )  ( b )  

FIGURE 5. Graphs of (a) the refractive index n. and ( b )  the density p through a 
density interface which has been smeared out by molecular diffusion. 

and the solutions are readily found to be 

C, = aC,, erfc { 2 / 2 ( ~ ,  t)*},  C,, = $C,,erfc { - 2 / 2 ( ~ , t ) 3 } ,  (12% b )  

where z is positive upwards and is zero at the initially sharp interface. We consider 
the case where the refractive indices of the upper and lower layers are initially equal. 
Neglecting the nonlinear terms in (1) ,  this means that 

anCAI = b,CB2 = n, - no = n2 - no, 

where no ( = 1.3330) is the refractive index of fresh water at  20 "C. From ( l ) ,  (2) and 
(1  2) we obtain 
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where pm = &(pl + p2) .  The values of the constants appropriate to  Epsom salts and 
sugar have been used t o  plot (13) and (14) and these graphs are shown in figures 5 (a)  
and ( b ) .  The important point t o  note is that  the maximum deviation of n ( z ,  t )  from 
n, is only 3.6 yo of n, - no. This maximum occurs at zt-t = k 0.00323 (where z is in 
cm and t in s) and the profile remains similar a t  all times. This mismatch of the re- 
fractive index will be apparent in practice only at a density interface which exists for 
quite a long time, such as at the density interface between two well-mixed layers. 
Measurements with a laser-Doppler anemometer (LDA) have been made through 
such an  interface with the relative density difference across it as high as 19 yo. The 
maximum value of n ( z ,  t )  -n, was equal to  0.036 x 67 x in this 
situation and this was .about three times the maximum error that  could result from 
the initial measurement error in setting n, equal to  n2. The interface was just visible 
on a shadowgraph but no difficulties were encountered with the LDA. 

= 2.4 x 

5. Experimental verification of the usefulness of the method 
Experiments in stratified liquids often use the shadowgraph technique to observe 

the Iiquid motions but when the refractive index is very nearly uniform the shadow- 
graphs almost completely disappear. Figure 6 (plate 1) shows two shadowgraphs of a 
forced plume (flow rate about 200 ml/min) of dense liquid emerging from a tube, 
proceeding without turbulence for a certain distance and then mixing with the liquid 
of the environment. The density difference between the plume and the surrounding 
liquid was 0.028 g/ml in both photographs. Figure 6 (a )  is for a plume of Epsom salts 
entering a tank of fresh water while figure 6(b) shows a plume of more concen- 
trated Epsom-salts solution entering a tank of sugar solution of the same refractive 
index (1.34445 f 0.00005). The plume is clearly visible in figure 6 ( a )  but cannot be 
seen in figure 6 ( b ) .  The refractive-index measurements were made with a temperature- 
compensating hand refractometer (American Optical 10400 TS meter) whith can be 
read to an  accuracy of f 0.00005. This type of refractometer does not give the in situ 
refractive index, but gives the refractive index that the solution would have at some 
standard temperature (this is usually an advantage when the instrument is used to 
measure, say, salinity). An estimate of the effect of a temperature difference on the 
refractive index of a sugar solution may be gained from the International Critical 
Tables (Washburn 1927). At worst, the change in refractive index for a temperature 
difference of 1 "C is only 0.0001, so we conclude that the effect of a temperature dif- 
ference between the solutions will be negligible if this temperature difference is less 
than 1 "C. 

A single laser beam shining through the turbulent part of the plume moved about 
by up to  5 mm a t  the edge of the tank in the case of figure 6 (a ) ,  but when the refractive 
indices of the two solutions were matched, no noticeable movement was seen. 

A laser-Doppler anemometer, operating in the forward-scatter, fringe mode, was 
used to  estimate the movement of the laser beams. A piece of translucent paper was 
attached to  the side of the tank away from the laser, and the probe volume arranged 
to  coincide with this plane. A rotating diffraction grating provided a frequency shift 
between the laser beams, and in the absence of any movement of the beams, the photo- 
detector yielded a slightly amplitude-modulated sine wave of this frequency. This 
small ( N 10 yo) amplitude modulation was caused by variations in the transmission 
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FIGURE 7. Plots of (a) the r.m.s. vertical velocity w and (b)  the horizontal velocity u through a 
density interface vs. the vertical co-ordinate E. The Richardson number (based on the density 
difference across the interface, the integral length scale and the r.m.s. turbulent velocity near 
the interface) wm 280. The centre and the edge of the interface are shown by arrows on the 
ordinate. 

intensity of the laser light through the rotating diffraction grating. The diameter 
(to the e--2 intensity levels) of the probe volume was estimated to be 360 pm, which 
corresponded to 70 fringes. (This was estimated by shining the beams through a 
microscope objective lens and viewing the image of the fringe planes on a distant 
screen.) The lens and pinhole combination in front of the photomultiplier was arranged 
such that light was received from only the central 60 fringes. Any movement of the 
laser beams will cause an irregular amplitude modulation on the signal from the 
photomultiplier. The laser beams were arranged to pass through the turbulent region 
of the forced plume and in the experiment of figure 6 ( b )  the amplitude modulation 
of the sine wave was not noticeably affected. The movement of the laser beams must 
have been less than 60 pm a t  the probe volume. 

The method of this paper has been used to take velocity measurements in a mixed 
layer which was entraining fluid across a density interface and also to obtain vertical 
and horizontal velocity measurements through a density interface. These measure- 
ments will be reported elsewhere (McDougall 1979) but we note that a t  no time did 
we encounter any extra difficulties because we were working with a stratified fluid. 
Figure 7 shows an example of measurements of the horizontal and vertical root-mean- 
square velocities through a density interface between two well-mixed turbulent 
layers. The density difference across the interface was 0.015 g/ml, and if this density 
difference had been simply due to different concentrations of common salt, the two 
laser beams would have moved about laterally through several millimetres and any 
velocity measurements would have been impossible. 

At no stage in any of the experiments were any salt fingers observed. If salt fingers 
had been present then they would have been visible because the different diffusivities 
of the two solutes would have transported the solutes unevenly in a manner similar 
to that discussed in tj 4. This can readily be observed by using common salt instead of 
Epsom salts. Fingers can then be clearly seen, even though the two initial solutions 
have the same refractive index. This is because the condition of Huppert & Manins 
(1973) is not fulfilled by the combination of common salt and sugar. 
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6. Wander of a laser beam 
In  this section we attempt to describe quantitatively the wander of a laser beam as 

it advances through a turbulent medium. We consider homogeneous isotropic turbu- 
lence in which variations in refractive index are caused by the concentration 8 of a 
passive scalar. By evaluating the typical spatial gradients of the refractive index 
which occur in this idealized turbulent flow, we obtain an estimate of the typical root- 
mean-square lateral deviation of a laser beam. 

Consider a laser beam propagating in the f x  direction. The beam will be made to 
deviate from a straight-line path by inhomogeneities in the ,refractive index. The 
deviation (or wander) in the x, y plane is caused by spatial gradients of the refractive 
index in the y direction; similarly, the wander in the x ,  x plane is caused by spatial 
gradients of the refractive index in the z direction. Let us first consider only the effect 
of the gradients of the refractive index in the y direction (i.e. anlay). If 9 is the angle 
(assumed small) which the beam makes with the x axis, then to  first order we have 

(Mowbray 1967) d$ 1an 1 a - = -- - = -- (n-no). 
dx nay  n a y  

The increase in refractive index over that of pure water (no) is assumed to be 
portional to the scalar concentration 8, i.e. n - no = be, where b is a constant, so 

The displacement s in the y direction after passing through a length A of the turbulent 
environment is 

[where we have made the approximation of replacing n in the denominator of (16) 
by no], and the quantity of interest to us is (2)t, i.e. the root-mean-square wander of 
the laser beam in the y direction. 

For dissolved salts in water, where the Schmidt number (=  v /D,  where D is the 
diffusivity of the scalar quantity) is large, the largest spatial concentration gradients 
occur in the ' convective-viscous ' wavenumber range of the concentration spectrum. 
In this high wavenumber range the three-dimensional concentration spectrum is 
given by (Batchelor 1959) 

where Cg = constant z 2 (Townsend 1976, p. 347), -- 
.so = 82(Q2)t/LB, E = +(?)j/L, 
L = integral length scale of the turbulent velocity field, 

LO = length scale of the scalar field 

q2 = u4 + ui + u& where the velocity vector u = (ul, u2, us), 

k = magnitude of the wavenumber vector k = (kl, k,, k3), 
v = kinematic viscosity, 

8 = concentration of the scalar property. 

(LO M L), - 
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The three-dimensional spectrum of 861% in this wavenumber range is then kf Oee(k) 
and we shall call this Y ( k ) .  

Now, from our knowledge of the statistics of a double integral (see, for example, 
Tennekes & Lumley 1972, equation 6.5.16) we have 

- 82 = % 1 3 J o A g ( x + x ' ,  y,z)-(x,y,z)dx'. a0 
3 ni ay 

Since A is much greater than the length scale over which aslay remains correlated 
with itself, the value of the integral will not be substantially changed by replacing 
the upper limit of integration with infinity. The correlation function 

is related to the one-dimensional spectrum function of a$/ay by 

where 

ao a0 
aY a Y  

exp ( - ik,x') - (x + x', y, z )  - (x, y, z )  dx', Y ( k , )  = - 

Y ( k , )  = [" [ *  Y ( k ) d k 2 d k 3 .  
J - m J - m  

From (20) we see that n Y ( k ,  = 0) is equal to the integral in (19), so we proceed to 
evaluate Y ( k , )  from (21). The convective-viscous wavenumber range ends near 
k = k: = ( v / D ) ) & - ~  (see equation 8.5.11 of Townsend 1976) so we assume that the 
integration in (21) terminates at ki + k: = kL2. We then have 

SO Y ( k l  = 0) = $Cjee(Y/E)* ki.  This leads to the following equation for (T)*: 

The most important point which we wish to emphasize here is that the typical 
lateral displacement in the y direction [as estimated by (22)] is proportional to ei, 
which is in turn proportional to [(n - n,J2]*. In  laser-Doppler anemometry we have two 
laser beams which wander independently in both the y and the z direction. A signal 
is received by the anemometer only when both laser beams pass simultaneously through 
the small region from which light is collected by the photo-detector (the probe volume). 
Consider the situation of figure 6 ( a ) ,  where the laser beams were observed to move 
about by up to 5 mm. We estimate the r.m.8. lateral deviation to  be one-quarter of 
this, i.e. 1.25 mm. Figure 8 shows a Gaussian probability density function (p.d.f.) 
with this standard deviation; the extent of the probe-volume diameter of 360 pm is 
also shown. The shaded area of this graph is 0-1 14 of the total area under the Gaussian 
curve. The proportion of time during which both beams pass through the probe 
volume is then given by (0.114)4 = 0-00017. This fourth-power dependence is due to 
the fact that both laser beams wander independently in the y and z directions. 
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FIQURE 8. Gaussian probability density function with a standard deviation of 1.25 mm. The 
probe volume is 360 pm in diameter and is shown as the shaded area in the figure. 

The difference in refractive index between the two solutions in figure 6(a )  was 
57 x but when the method of this paper is used to match the refractive indices, 
the difference in refractive index between the two solutions will be 2 x at most. 
This means that (3)t will be reduced by a factor of 5& (because (2)* cc ej cc [(n - no)2]4). 
The r.m.s. lateral deviation is then expected to be & x 1-25 mm = 44pm. This small 
beam movement means that the beams will not wander outside the probe volume and 
so will always cross in the probe volume. The random superimposed frequency shifts 
will also be quite small and could normally be neglected. 

In  summary, this treatment of laser-beam wander shows that the r.m.6. lateral 
deviation is proportional to [(n - n0)2]4, and together with the fourth-power depen- 
dence on the relative areas of figure 8, this theoretical model shows why the method of 
this paper is so successful. 

The estimated values of the parameters for the experiment of figure 6 ( a )  are 
(?)4 = 5 em s-l, A = 2 em, Ci = 2, v = 0.01 em2 s-l, L = Lo = 0.5 cm, @ = &(0.03)2, 
b = 0.2 and D = 0.61 x em2 s-l. Inserting these in (22) gives (F)* = 2 mm. This 
is the correct order of magnitude for the standard deviation of the lateral displace- 
ment (in keeping with the observed maximum displacement of & 5 mm) but is prob- 
ably too high by a factor of two. 

We note in passing that the variations in refractive index in gases (and in flames in 
particular) are remarkably small compared with those that commonly occur in 
stratified liquids. The refractive index of air, for example, changes by only 2 x 
when its temperature is raised by 1000 "C (Weast 1971). The same change in refractive 
index of a solution of common salt occurs at a density difference of only 0.0007 g/ml, 
i.e. a relative density difference of 0.07 yo. Consequently many laser-Doppler anem- 
ometer studies of flames have been reported (e.g. DurBo & Whitelaw 1974). 

I am grateful to Dr A. A. Townsend and Professor W. H. Munk for valuable dis- 
cussions after which the ideas in 8 6 evolved. This work was begun at the University 
of Cambridge, where financial support was provided by a George Murray Overseas 
Scholarship (given by the University of Adelaide), and was completed at the 
Australian National University, where I have been supported by a Queen's Fellow- 
ship in Marine Science. 
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FIGURE 6. Shadowgraphs of a forced plume of Epsom-salts solution. (a) Epsom-salts solution 
entering a tank of fresh water. Note the long region of laminar flow between the pipe exit and 
the breakdown to turbulence. (b) Epsom-salts solution entering a tank of sugar solution of the 
same refractive index; no shadowgraph can be seen. The density difference between the plume 
and the tank fluid was the same in both cmes. 
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